Results on coupled Ricci and harmonic map flows
نویسندگان
چکیده
منابع مشابه
Harmonic Ricci Flow on surfaces
Let g(t) be a family of smooth Riemannian metrics on an n-dimensional closed manifold M . Moreover, given a smooth closed Riemannian manifold (N, gN ) of arbitrary dimension, let φ(t) be a family of smooth maps from M to N . Then (g(t), φ(t)) is called a solution of the volume preserving Harmonic Ricci Flow (or Ricci Flow coupled with Harmonic Map Heat Flow), if it satisfies ∂tg = −2 Ricg + ...
متن کاملCombinatorial Ricci Flows on Surfaces
We show that the analogue of Hamilton’s Ricci flow in the combinatorial setting produces solutions which converge exponentially fast to Thurston’s circle packing on surfaces. As a consequence, a new proof of Thurston’s existence of circle packing theorem is obtained. As another consequence, Ricci flow suggests a new algorithm to find circle packings.
متن کاملSingular Ricci Flows I
Abstract. We introduce singular Ricci flows, which are Ricci flow spacetimes subject to certain asymptotic conditions. We consider the behavior of Ricci flow with surgery starting from a fixed initial compact Riemannian 3-manifold, as the surgery parameter varies. We prove that the flow with surgery subconverges to a singular Ricci flow as the surgery parameter tends to zero. We establish a num...
متن کاملimproved regularity of harmonic map flows with hölder continuous energy ∗
For a smooth harmonic map flow u : M× [0, T ) → N with blow-up as t ↑ T , it has been asked ([6], [5], [7]) whether the weak limit u(T ) : M→ N is continuous. Recently, in [12], we showed that in general it need not be. Meanwhile, the energy function E(u(·)) : [0, T ) → R, being weakly positive, smooth and weakly decreasing, has a continuous extension to [0, T ]. Here we show that if this exten...
متن کاملRicci flows with unbounded curvature
We show that any noncompact Riemann surface admits a complete Ricci flow g(t), t ∈ [0,∞), which has unbounded curvature for all t ∈ [0,∞).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Geometry
سال: 2015
ISSN: 1615-7168,1615-715X
DOI: 10.1515/advgeom-2014-0026